Received August 21, 2002
Synthesis of 3,4,7,8-tetraalkyl-2-oxa-bicyclo[4.2.0]octa-1(6),3,7-trien-5-ones (4a-d), 4,5,7,8-tetraalkyl-2-oxa-bicyclo[4.2.0]octa-1(6),4,7-trien-3-ones (6a-d) and 3,4,7,8-tetraalkyl- $2 \mathrm{H}, 5 \mathrm{H}$-cyclobuta [b]pyrano-[2,3- d] pyran-2,5-diones (7a-d) from the reaction of alkynes (1a-d) with carbon suboxide (2) in various molar ratios is described.
J. Heterocyclic Chem., 40, 321 (2003).

The reactions of carbon suboxide with different substrates have been extensively studied [1-3]. Recently our studies were concentrated on the reactions between carbon suboxide and some alkyne derivatives bearing either a hydroxy or an amino group, to synthesize heterocyclic compounds of potential biological interest [4].

In this present paper we wish to report on the synthesis of some new bicyclo and tricyclo derivatives obtained by reacting carbon suboxide and alkynes in three different molar ratios.
3,4,7,8-Tetraalkyl-2-oxa-bicyclo[4.2.0]octa-1(6),3,7-trien-5-ones (4a-d) and 4,5,7,8-tetraalkyl-2-oxa-bicyclo-

Scheme 1

[4.2.0]octa-1(6),4,7-trien-3-ones (6a-d) were obtained by reacting 0.032 mole of alkyne derivatives (1a-d) with 0.016 mole of carbon suboxide (2) in anhydrous chloroform solution. By using this ratio (2:1), yields are about 50%.

The proposed reaction mechanism starts from the attack of 1a-d by 2 leading to the 4 -oxomethylidene-2-cyclo-buten-1-one derivatives (3a-d) followed by the attack of another 1a-d molecule to achieve the compounds (4a-d) and (6a-d). Although intermediates 3a-d were not isolated in this reaction, they have been previously reported by an Austrian researching group [5].

Analogously, though in a previous paper we described the structure and stability of similar spiroalkandiones [6], any attempt to isolate $\mathbf{5 a - d}$ failed, since they rearranged to form 6a-d (Scheme 1).

By reacting compounds 1a-d with 2 in a 1:2 molar ratio, we obtained a gummy product, that was probably a polymer or a macrocycle, along with a small quantity of 4a-d [7]. However, by reacting 1a-d with 2 in a 2:2.5 molar ratio, we obtained the new 3,4,7,8-tetraalkyl- $2 \mathrm{H}, 5 \mathrm{H}$ cyclobuta $[b]$ pyrano[2,3- d]pyran-2,5-diones (7a-d), and a

Scheme 2

Table 1
Spectral Data for Compounds (4a-d)

Table 2
Spectral data for compounds ($\mathbf{6 a - d}$).

Table 4
Analytical and Spectral Data for Compounds (4a-d, 6a-d and 7a-d)

	Yield (\%)	Mp $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { FTIR } \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$	Elemental Analysis Calc. (\%) (Found)	$\begin{aligned} & \mathrm{MS} \\ & \mathrm{~m} / \mathrm{z} \end{aligned}$	
4a	45	161-163	$\begin{aligned} & 1750-1675-865- \\ & 845-800 \end{aligned}$	$\begin{gathered} \text { C:74.98; H:6.86 } \\ (74.95) ;(6.90) \end{gathered}$	$\begin{aligned} & 176\left(\mathrm{M}^{+}\right), 148(\mathrm{M}-\mathrm{CO}), 122\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{6}\right), \\ & 94\left(148-\mathrm{C}_{4} \mathrm{H}_{6}\right) \end{aligned}$	$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}$
4b	52	169-172	$\begin{aligned} & 1750-1675-860- \\ & 850-790 \end{aligned}$	$\begin{gathered} \text { C:77.55; H:8.68 } \\ (77.59) ;(8.70) \end{gathered}$	$\begin{aligned} & 232\left(\mathrm{M}^{+}\right), 204(\mathrm{M}-\mathrm{CO}), 150\left(\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{10}\right) \\ & 122\left(204-\mathrm{C}_{6} \mathrm{H}_{10}\right) \end{aligned}$	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}$
4c	55	175-177	$\begin{aligned} & 1750-1675-960- \\ & 845-790 \end{aligned}$	$\begin{gathered} \text { C:79.12; H:9.78 } \\ (79.16) ;(9.81) \end{gathered}$	$\begin{aligned} & 288\left(\mathrm{M}^{+}\right), 260(\mathrm{M}-\mathrm{CO}), 150\left(\mathrm{M}-\mathrm{C}_{8} \mathrm{H}_{14}\right) \\ & 110\left(\mathrm{C}_{8} \mathrm{H}_{14}\right) \end{aligned}$	$\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2}$
4d	47	198-199	$\begin{aligned} & 1765-1675-1640- \\ & 950-780 \end{aligned}$	$\begin{gathered} \text { C:87.71; H:4.75 } \\ (87.69) ;(4.79) \end{gathered}$	$\begin{aligned} & \text { 424(M+ } \left.\mathrm{M}^{+}\right), 396(\mathrm{M}-\mathrm{CO}), 218\left(396-\mathrm{C}_{14} \mathrm{H}_{10}\right), \\ & 178\left(\mathrm{C}_{14} \mathrm{H}_{10}\right) \end{aligned}$	$\mathrm{C}_{31} \mathrm{H}_{20} \mathrm{O}_{2}$
6 a	30	178-180	$\begin{aligned} & 1655-1630-1150- \\ & 1035-870 \end{aligned}$	$\begin{gathered} \text { C:74.98; H:6.86 } \\ (75.00) ;(6.90) \end{gathered}$	$\begin{aligned} & 176\left(\mathrm{M}^{+}\right), 146\left(\mathrm{M}-2 \mathrm{CH}_{3}\right), 132\left(\mathrm{M}-\mathrm{CO}_{2}\right), \\ & 116(\mathrm{M}-4 \mathrm{CH}) \end{aligned}$	$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}$
6b	48	180-182	$\begin{aligned} & 1774-1620-1150- \\ & 1070-1030 \end{aligned}$	$\begin{gathered} \text { C:77.55; H:8.68 } \\ (77.51) ;(8.72) \end{gathered}$	$232\left(\mathrm{M}^{+}\right), 188\left(\mathrm{M}-\mathrm{CO}_{2}\right), 174-106-82$	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}$
6 c	51	187-189	$\begin{aligned} & 1774-1630-1100- \\ & 1030-955 \end{aligned}$	$\begin{aligned} & \text { C:79.12; H:9.78 } \\ & \text { (79.10); (9.75) } \end{aligned}$	$\begin{aligned} & 288\left(\mathrm{M}^{+}\right), 244\left(\mathrm{M}-\mathrm{CO}_{2}\right), 134\left(244-\mathrm{C}_{8} \mathrm{H}_{14}\right), \\ & 110\left(\mathrm{C}_{8} \mathrm{H}_{14}\right) \end{aligned}$	$\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2}$
6d	60	209-210	$\begin{aligned} & 1774-1630-1100- \\ & 980-950 \end{aligned}$	$\begin{gathered} \text { C:87.71; H:4.75 } \\ (87.75) ;(4.71) \end{gathered}$	$\begin{aligned} & 424\left(\mathrm{M}^{+}\right), 380\left(\mathrm{M}-\mathrm{CO}_{2}\right), 246\left(\mathrm{M}-\mathrm{C}_{14} \mathrm{H}_{10}\right), \\ & 202\left(380-\mathrm{C}_{14} \mathrm{H}_{10}\right) \end{aligned}$	$\mathrm{C}_{31} \mathrm{H}_{20} \mathrm{O}_{2}$
7a	53	205-207	$\begin{aligned} & 1774-1645-1010- \\ & 990-870 \end{aligned}$	$\begin{gathered} \text { C:68.85; H:4.95 } \\ (68.89) ;(4.98) \end{gathered}$	$\begin{aligned} & 244\left(\mathrm{M}^{+}\right), 200\left(\mathrm{M}-\mathrm{CO}_{2}\right), 190\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{6}\right), \\ & 146\left(200-\mathrm{C}_{4} \mathrm{H}_{6}\right) \end{aligned}$	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4}$
7b	58	210-112	$\begin{aligned} & 1774-1640-1000- \\ & 990-860 \end{aligned}$	$\begin{aligned} & \text { C:71.98; H:6.71 } \\ & (72.00) ;(6.76) \end{aligned}$	$\begin{aligned} & 300\left(\mathrm{M}^{+}\right), 256\left(\mathrm{M}-\mathrm{CO}_{2}\right), 218\left(\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{10}\right), \\ & 174\left(256-\mathrm{C}_{6} \mathrm{H}_{10}\right) \end{aligned}$	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4}$
7c	60	209-211	$\begin{aligned} & 1774-1640-1080- \\ & 990-930 \end{aligned}$	$\begin{gathered} \text { C:74.13;H:7.92 } \\ (74.10) ;(7.96) \end{gathered}$	$\begin{aligned} & 356\left(\mathrm{M}^{+}\right), 312\left(\mathrm{M}-\mathrm{CO}_{2}\right), 246\left(\mathrm{M}-\mathrm{C}_{8} \mathrm{H}_{14}\right) \\ & 202\left(312-\mathrm{C}_{8} \mathrm{H}_{14}\right) \end{aligned}$	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{4}$
7d	67	217-219	$\begin{aligned} & 1774-1640-1000- \\ & 990-850 \end{aligned}$	$\begin{array}{r} \mathrm{C}: 82.91 ; \mathrm{H}: 4.09 \\ (82.84) ;(4.08) \end{array}$	$\begin{aligned} & 492\left(\mathrm{M}^{+}\right), 448\left(\mathrm{M}-\mathrm{CO}_{2}\right), 314\left(\mathrm{M}-\mathrm{C}_{14} \mathrm{H}_{10}\right) \\ & 270\left(448-\mathrm{C}_{14} \mathrm{H}_{10}\right) \end{aligned}$	$\mathrm{C}_{34} \mathrm{H}_{20} \mathrm{O}_{4}$

(600 mL), stabilised with amylene. At completion the mixture was kept at $-5^{\circ} \mathrm{C}$ for 24 h , then at rt for 72 h while stirring continuously. At the end of the reaction, the solvent was removed under reduced pressure and the crude residue was purified by column chromatography (benzene:acetone 5:1 as eluents, the eluent ratio was varied by increasing the acetone until a benzene:acetone ratio of $1: 1$ was reached) to provide $\mathbf{4 a} \mathbf{- d}$ as first eluate and successively $\mathbf{7 a}$-d. The analytical and spectral data are listed in Table 3 and 4.

REFERENCES AND NOTES

[1] L. Bonsignore, A. De Logu, G. Loy, S. M. Lavagna, and D. Secci. Eur. J. Med. Chem., 29, 479 (1994).
[2] L. Bonsignore, F. Cottiglia, H. Elkhaili, F. Jehl, S. M. Lavagna, G. Loy, F. Manna, H. Monteil, D. Pompei, and D. Secci, Farmaco, 53, 424 (1998).
[3] D. Secci, F. Chimenti, S. M. Lavagna, L. Bonsignore, F. Manna, S. Alcaro, and A. Bolasco, Heterocycles, 53, 2789 (2000).
[4] L. Bonsignore, G. Loy, D. Secci, M. Secci, and F. Cottiglia, Farmaco, 53, 680 (1998).
[5] T. Kappe and E. Ziegler, Angw. Chem., Int. Ed. Engl., 13, 491 (1974).
[6] L. Bonsignore, G. Loy, F. Cottiglia, and A. Calignano, Farmaco, 52, 663 (1997).
[7] L. Bonsignore and G. Loy, J. Heterocyclic Chem. 35, 117 (1998).
[8] L. Crombie, P. A. Gilbert, and R. P. Houghton, J. Chem. Soc. C. 130 (1968).

